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Abstract: Atoms in a small molecule are assembled by covalent bonds. Small molecules or 

ionic species tend to aggregate to larger units like macromolecules or crystals via various 

attractive forces categorized as noncovalent bonds (nonCBs). No living creatures can exist 

without water, whose moleculs are aggegated via hydrogen bonds, one of the most important 

nonCBs. Interfacial phenomena are associated with adsorption, mostly mediated by nonCBs at 

the boundaries between dissimilar counterparts. Aggregation of biomolecules is the origin of 

living organisms. Unfavorable aggregation states of biomolecules lead to diseases. Functions 

of  nanocomposite materials depend on the states of molecular and/or ionic aggregation with 

nonCBs. Crystal engineering aims at controlling aggregation of organic and inorganic 

components to enable innovative nanostructured materials. This tutorial review focuses on 

some typical aspects of crossdisciplinary features of nonCBs in an attempt to trigger new 

insights in materials-oriented chemical science and engineering.  
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1. Introduction 

 `All matters comprise atoms. An interatomic interaction within a simple molecule is 

explained by sharing one or more electrons in the outermost or valence orbitals surrounding 

participating nuclei. The atomic interaction in such a small molecule is defined as covalent 

bonding [1, 2]. All other atomic interactions belong to noncovalent interactions or noncovalent 

bonds (nonCBs). Among many nonCBs, van der Waals interaction and hydrogen bonds (HBs) 

are strictly defined by IUPAC [3, 4]. However, categorization of nonCBs are so broad and 

diverse that not all of them are defined unequivocally [5-7]. Strength of a chemical bond, 

regardless of covalency or noncovalency, is conventionally ranked by the enthalpy of 

atomization of associated aggregates [8, 9]. Actually, the physicochemical content of bond 

strength is much more complicated than those definable by thermodynamic terminology [10] 

as extensively discussed [11-15]. Basics of chemical bonds are not fixed at the textbook level 

when we strictly account the roles of electronegativity and atomic size [16]. The concept of 

chemical bonds is based on quantum mechanics and discussed in terms of the bonding and 

antibonding electrons [17, 18]. By the same token, there is an exact definition of bridge bonds 

in terms of the electron distribution function [19]. Detailed discussion of the theoretical aspects 

of nonCBs based on quantum physics will not be covered in the present text. 

Aggregation of small molecules into larger units occurs in many different ways, e.g., clusters, 

supra- or macromolecules, biological cells, colloidal dispersing units or crystals. Interactions 

necessary for any molecular aggregation are dominated by nonCBs [20, 21]. Concepts of 

molecular aggregates discussed in this text play a crucial role on our daily life, including 

cooking (generally in food preparation), medical care, or materials technology for high-tech 

products such as microelectronic devices. Associative processes of small chemical construction 

units frequently proceed via a self-assemblage along with the principles of thermodynamic 

stabilization [22-25]. The concept of nonCBs is also significantly associated with coordination 

chemistry, centered  by the concept of ligands [26-28]. Simplest inorganic ligands are oxide 

(O2-) or hydroxide (OH-) ions, when we observe conventional oxide crystals as the aggregates 

of inorganic coordination units, e.g., SiO4 in SiO2 solids, or TiO6 in TiO2 crystals. Ionic bonds 

dominating many popular crystals like NaCl are also categorized to nonCBs [15, 29].  

The specific topics with nonCBs will be displayed in the next chapter. Introduction to many 

other working nonCBs are discussed by referring to interfacial phenomena, colloids and 

polymers as well as heterogeneous catalysis in chapters 3 and 4. Biomolecular aggregates like 

proteins are discussed in chapter 5. Chapter 6 exhibits crystal engineering and nanocomposite 

materials with extended discussion on the roles of nonCBs. In this last chapter, emphasis is laid 

on the interaction among inorganic and organic components, which may lead to more 

sustainable materials and their processing. 

2. Noncovalent bonds 

Noncovalent interactions are described in terms of electrostatics and polarization, in 

conjunction with Coulombic interaction of molecules [5, 6, 30]. Whether or not all the 

noncovalent interactions are defined as chemical bonds is controversial, particularly for van 

der Waals interaction. Microscopically, nonCBs are also understood as an interaction between 

energetics of σ- and π-hole and the “surface” of molecules [31]. Hydrogen bonds are compared 
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with other similar nonCBs like chalcogen-, halogen-, or tetrel bonds in terms of  electron donor 

and acceptor in a periodical table [5, 6, 20, 30]. Tetrel bonds, centered by Group 14 atoms like 

C, Si, Ge [20] are similar to HBs and can be distinguished from genuine HBs only by detailed 

spectroscopic studies [32].  

Occurrence of HBs is basically associated with charge transfer between dipoles [33-35]. There 

are wide variety of bond strenth among HBs, as Dejiraju pointed their borderless nature under 

the concept of hydrogen bridge [36]. As guided in Fig. 1, a balance of electrostatics, van der 

Waals nature, and covalency determins the charactger of HBs. Hydrogen bonds are expressed 

more generally as hydrogen bridges, X-H-A, where the hydrogen atom (H) abridges two 

neighboring atomic species, X, and A.  The X-H-A bridging bond is explained by introducing 

three limits of HBs, i.e., covalent limit (40 kcal/mol), electrostatic limit (15 kcal/mol) and van 

der Waals limit (0.5 kcal/mol) [36]. Corpinot later introduced this concept in a wider 

framework in his tutorial review [37].  

 

 

Fig. 1. Categorization of hydrogen bonds [29]  (see text for details) 

Figures 2a and 2b also demonstrates that HBs are not only simple bonds between two small 

molecules by s-electrons  [38] but also p-electrons can participate. Hydrogen bonding form 

networks as well, which play an important role on the natural polymers like starch or cellulose 

[39, 40]. Multiple HBs bring about supramolecular complexes as shown in Fig. 2c [41]. In an 

aqueous solution containing ionic species, HBs play a particularly important role [42]. 

Excellent reviews by Scheiner [43] and Pairas et al. [38] exhibit physicochemical details of 

HBs. The unusually high boiling point of water, 373.2 K, with its atomic mass unit (amu) as 

small as 18.0 Da, compared with those of organic molecules at around similar molecular size, 

e.g., 111.6 K with 16.0 Da. The difference symbolizes the role of HBs in our daily life due to 

the high density of HBs in condensed phases (liquids and solids). The role of HBs 
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 in our daily life is diverse, for instance, gelation of the colloids [44]. A non-flowable gel is 

formed even with a water content more than 97% in the case of edible jellies (dessert). Their 

smooth texture would be impossible without HBs.  

 

Fig. 2. Representative features of HBs. (a) HBs between same or different molecules [38]; (b) CH–p 

HBs [38];  (c) Multiple HBs to supramolecular structure [41] 

What we observe in kitchen during cooking and baking is predominated by structural change 

of starch and denaturization of proteins. For both processes, reconstruction of the HBs plays a 

chief role. The subunits of starch, i.e., amylose and amylopectin [45] are rearranged during 

cooking to make row grains edible. Associative forces within and between these subunits are 

based on HBs [46, 47]. Most of the meat is heated in the kitchen to denature proteins with 

widely varying amount of liquids in the pot or pans. What is happening there is the changes in 

the three-dimensional structure of the polypeptide chains. This is usually coined as denaturation 

of proteins [48, 49]. Basics of HBs with their related materials are discussed in tutorial reviews 

[50-52]. Molecular crystals and their design are closely related to HBs [37]. Related issues will 

be discussed in depth in Chapter 6. 

Hydrogen bonds are most important in biosciences [38, 53]. No living creatures can exist 

without water and associated HBs [54]. Indeed, water molecules with their intrinsic attractive 

interaction by HBs are active constituents of biological cells [53]. Their roles include those of 

solvent, hydration and “joints” in many biomolecular units. It is important to note that similar 

chemical issues need consideration in medicine or pathology [55, 56]. Related topics will 

further be referred to Chapter 5. Basics of functional materials are intensively associated with 

HBs with various interaction of other chemical bonds. Mechanically interlocked molecular 

frameworks and larger structural units, called metal organic frameworks (MOFs), are the 
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concepts related to functional materials associated with HBs [57, 58]. These topics will be 

discussed in more detail in Chap. 6 with the interests in the functional materials processing.  

3. Adsorption and interfacial phenomena 

Adsorption is one of the fundamental phenomena in surface and interface chemistry. It plays a 

crucial role in diverse categories from environmental issues to chemical industry. The 

interaction between the adsorbate, the chemical guest species which are going to the host 

substrate species, i.e., adsorbent is generalized as adsorption. It is divided into two categories. 

One is physical adsorption (physisorption) driven by van der Waals force, and the other is 

chemical adsorption (chemisorption), where chemical bonds are formed between adsorbate and 

adsorbent [59, 60]. While van der Waals interaction is occasionally categorized as a weak 

bonding, the role of the electrons is only a very weak interaction due to their synchronized 

movement belonging to corresponding atomic parties. The interaction is either due to weak 

London dispersion forces or a bit stronger dipole-dipole forces [61] without participation of 

chemical bonds in a conventional context. Therefore, only chemisorption is considered further 

in this chapter.  

Basics of chemisorption have been intensively studied particularly for neutral gas molecules 

on metal single crystals [60]. The intensity of the host – guest interaction is evaluated by the 

adsorption energy, i.e., the energy needed to separate the adsorbate from the adsorbent. It can 

be quantified as the heat released during adsorption and measured by calorimetry [62] from the 

combination of atoms on single crystal with defined surface described by Miller indices.  Such 

a basic study is important for the application to much more complicated organic molecules on 

the “dirty” substrates, e.g., defective powder surfaces [63]. The interaction or bonding between 

adsorbents and adsorbates varies from covalent to a variety of nonCBs [60]. One of the 

representative mechanisms, the Langmuir-Hinshelwood type, is based on the energetically 

equilibrated states between the guest and host species by forming a kind of nonCBs. As a 

consequence, adsorbed species may be deformed or dissociate due to mismatches of molecular 

bond length and the interatomic spacing on the substrate. This frustrated state of the adsorbed 

species is less stable and more active, so that it triggers heterogeneous catalytic reactions [64]. 

Surface active agents or surfactants are associating two nonfriendly materials species, i.e., 

water affinitive (hydrophilic) and water repelling (hydrophobic) ones [65]. The latter property, 

coined as hydrophobicity, means that the molecule or its local does not strongly interact with 

water, but only exhibiting van der Waals interactions. Surfactants play an important role in 

many fields in our daily life, including foods, clothes or paints. Surfactant molecules form 

micelles (micellization) when their concentration exceed a critical value, called critical micelle 

concentration, abbreviated as ccc [66]. Micellization results from hydrophobic interaction 

when participating molecules possess hydrophilic and hydrophobic elements (amphiphilic 

molecules) simultaneously [63, 67]. Micellization generally occur in many other amphiphilic 

molecules like peptide, and lead to various functionalization [68]. Associated aspects will 

further be discussed in Chap. 5 in conjunction with biomaterials. One of the main mechanisms 

of the surfactant is the removal of oily dirt from textiles by virtue of encapsulation by micelles 

[44, 69, 70]. The process is not restricted to washing textiles [71] or foods [72], but extended 

to broader environmental issues like soil decontamination [73, 74].  
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Senna                                                                                                                         CITI Science 4 (2024) 3-26 

  

8 
 

Adsorption is a leading principle of heterogeneous catalysis, which predominates many 

chemical engineering processes [60]. As historically summarized by Fechte et al [75], the topic 

was almost always spotlighted in chemical industry, historically lead by petroleum industry 

[76, 77] and polymer technology [78, 79]. One of the most significant mechanisms involved in 

heterogeneous catalysis is dissociative adsorption, i.e., a neutral molecule is dissociated upon 

its adsorption on the substrate. This would seem that a covalent bond stabilizing an adsorbing 

molecule is weaker than nonCBs enabling adsorption. This puzzling question will be solved 

when we consider quantum states of the adsorbing species [80] (Fig. 3) or heterogeneity of the 

host substrate [81-83] (Fig. 4). 

 

Fig. 3. Quantum state controlled dissociative adsorption [80] 

 

 

 

 

 

 

Fig. 4. Substrate controlled dissociative adsorption [81] 

 

 

Recently, application of heterogeneous catalysis expanded toward environment techniques 

seeking sustainability. As shown in Fig. 5 [84], the catalysis-centered closed system enable the 

life cycle toward carbon neutrality. Smart utilization of biomass resources is one of the related 

top issues. To convert cellulosic resources to biofuels like ethanol, there are many steps, where 

heterogeneous catalyses play a crucial role [85-87]. Elimination of hazardous substances, like 

volatile organic species, is one of the central positions of environmental issues [88].  
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Fig. 5. A scheme of working heterogeneous catalyst. Proposed renewable carbon cycle with 

heterogenous catalysts to convert biomass and CO2 into renewable fuels and chemicals 

simultaneously [89] 

 

Fig. 6 Chemical grafting of organosilanes onto TiO2 nanoparticles surface [90] 

There is a fundamental phenomenon on the surface of metal oxides with water. Oxide ion, O2- 

on the surface is particularly affinitive to protons and hence leads water adsorption. In most 

cases, adsorbed water does not remain as a neutral molecule but tends to polarize toward 

dissociation to H+ and OH- whose tendency depends on the state of surface [91]. In case of 

silica, where the structure is described as a network of siloxane (Si-O-Si) bonds, dangling bond 

on the surface turns adsorbed water into a surface silanol group, Si-OH. The process has been 

investigated in detail by experiments [92] or molecular dynamic calculations [93]. Thus, the 

surface of typical oxides are rich in surface OH groups under the ambient conditions. Surface 
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modification with coupling agents mostly occurs via a chemical interaction with such surface 

OH groups, resulting in the surface grafting, as exemplified in Fig. 6 [90]. Related techniques 

are used for enhancing catalytic activity [94] or corrosion protection of metal surfaces [95] . 

One of the industrially important related genres is a color material, i.e., paints and inks. They 

are dispersion systems, where small solid pigment particles are dispersed in liquids called 

vehicles. Until recently, vehicles are mostly hydrophobic organic solvents while pigments are 

hydrophilic oxides or sulfides, so that the resulting paints are unstable, prone to quick 

sedimentation. In line with avoiding volatile organic species mentioned above, water-based 

vehicles are preferentially used nowadays. Depending on the vehicle polarity, pigment particles 

need to be either hydrophilic (water affinitive) or lyophilic (oil affinitive). Thus, surface 

modification of pigments need to be flexible. Use of various surfactants including amphiphilic 

(both affinitive) have been developed [96, 97]. Coupling agents are also important for surface 

modification. While their structures are similar to those of surfactants, they are grafted on the 

surface, with more stable and irreversible nonCBs [90, 98].  

4. Crosslinking in colloidal dispersion and polymers 

Crosslinking in colloidal system changes a free-flowing dispersion (sol) into solid-like states 

(gel). The process is generally called as a sol-gel process. This expands from a recipe of sweet 

jerry in kitchen to a processing of solid functional materials [99]. Most of the related science 

and technology is based on the hydrogel, solidified by HBs [100]. As shown in Fig. 7, network 

structure in hydrogel is often accompanied by hydrophobic associative force [101]. Structuring 

of hydrogel is predominated by the concentration of coexisting salts and pH, and mostly 

associated with self-assembly [102]. Such a structured hydrogel is applied intensively to tissue 

engineering, as will be mentioned in the next chapter. 

 

Fig. 7. Network structure of hydrogen bond and hydrophobic associating cross-linked hydrogels [100] 

Linear polymers drastically changes their mechanical properties by three-dimensional 

crosslinking. Crosslinking of elastomer is one of the traditional technologies in rubber industry 

under the concept of vulcanization of natural rubber or cis- and trans-polyisoprene [103]. 

Mechanical properties of the rubber – clay composites are known to be improved by HBs [104]. 

Difference in the thermoset plastics from thermoplastic is due to the covalently crosslinked 

structure of the former [105]. This is out of the scope of this article. However, it is important 
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to note that covalent and noncovalent crosslinking are almost always mixed within a single 

polymeric material as shown in Fig. 8 [106]. Non-covalently crosslinked polymers or hydrogels 

are now under spotlight, particularly in conjunction with tissue engineering [107, 108]. Role 

of HBs on engineering nanocomposites was discussed in detail by Lu et al [109]. The concept 

of dynamic bonding, which reversibly break and reform, will give many attractive properties 

particularly in nanocomposite hydrogels. 

 

Fig. 8. Polymer network depicting covalent 

as well as noncovalent interactions [106] 

 

 

 

 

 

Fig. 9 Schematic illustration of extrusion-based 3D printing of gelatin-based colloidal inks [110] 

Additive manufacturing using 3D printer requires quick crosslinking of the gelatin-based 

colloidal inks ejected from jet nozzle. Irradiation or photo-induced crosslinking is suitable for 

those purposes [110, 111]. Figure 9  displays the process from macroscopic to microscopic 

view of the related chemical issues involved [110]. Crosslinking is also leading adhesive 

technology. Modern robust hydrogel adhesive, frequently used for do-it-yourself activity, dual 

hydrogen bonding network play a significant role [112, 113]. Formation and development of 

HBs during preparation of hydrogel-based adhesive is shown in Fig. 10 [113].  
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Fig. 10. Scheme of preparation of Amylopectin (Amy)/poly(N-hydroxyethyl acrylamide) (PHEAA,) 

double network (DN) hydrogels via a one-pot heating-cooling-thermal polymerization method [113] 

5. Protein and biomaterials 

Proteins are products of life, from microorganisms to human beings. They are ensembles of 

amino acids. To be more exact, the basic unit of proteins is a polypeptide chain of various 

amino acids covalently bound by peptide bonds [114]. Bio-related functions emerge, however, 

from the higher order structure where primary peptide chains are combined by HBs, suggested 

at first by Pauling and his coworkers [115, 116]. In addition to HBs, salt bridges, to be 

understood as a kind of nonCBs, play an important role as well [12]. Higher order protein 

structures are diverse. The first step, formation of secondary level structures in the form of α-

helices and β-sheets is displayed in Figs. 11, where the red dotted lines are an indication of the 

presence of hydrogen bonds between two peptide strands [117]. The change from secondary to 

quaternary structure is illustrated in Fig.12 [118]. Those higher structures are then examined 

from various viewpoints [119, 120]. One of the top issues with protein is associated with 

diseases due to misfolding of higher order protein structure, called prions [121], like Alzheimer 

symptom [122] or bovine spongiform encephalopathy (Mad cow disease) [123]. It is really 

interesting but still remains mysterious how the prions are generated, despite their importance 

of life science [117, 124]. For these reasons, protein engineering tend to direct to therapeutics 

and pharmaceutics [119, 125]. One of the latest protein technologies is also associated with 

vaccines against Covid-19 pandemics [126, 127]. Our brain memory storage is associated with 

multiple HBs pattern in complicated neuronal synapses [128, 129]. Brain science is rapidly 

developing area even at the molecular level, where the role of HBs is discussed on various 

bases [130-132]. Ambitious attempts on the synthesis of synapse organizers might pave the 

way to combat brain diseases such as Alzheimer’s [129]. 
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Fig. 11. Formation of secondary level structures or protein in the form of α-helices and β-sheets [117]. 

 

Fig. 12. Four orders of protein structure exemplified by human deoxyhemoglobin [118] 

Tissue engineering is one of the rapidly developing technological genres associated with 

nonCBs. Development of preparing artificial bones [133] and skin [134] is remarkable. While 

those artificial tissues are synthesized purely chemically, as shown in Fig. 13 as an example of 

artificial skin synthesis [134], such tissues are also embodied from the concept of biomimetic 

technology [135, 136]. As mentioned in the previous chapter, most of the related materials 

belong to the hydrogels [100, 101, 137]. For more practical application of those materials to 

regeneration medicine, we have to overcome biocompatibility, which depends on the critical 

balance with our immune system [138, 139].  
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Fig. 13. Schematic diagram of preparation of artificial skin from natural silk fibroin (SF) and cellulose 

nanocrystals (CNC) [134]. 

6. Crystal engineering and nanocomposite materials  

This chapter discusses two important nonCBs related items, i.e., crystal engineering and 

metalloxane bonds. Crystal engineering is based on the molecular crystals. Only a few 

inorganic substances like water, carbon dioxide or iodine form molecular crystals. In contrast, 

nearly all the organic molecules form molecular crystals when they order in a long range. 

Crystal engineering is based on the combination of HBs [29, 37]. Crystal engineering is also a 

part of computational chemistry, seeking appropriate combination of the element structures by 

nonCBs, by virtue of the database sources like the Cambridge Structural Database (CSD) 

toolbox [140]. 
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Fig. 14. Crystal structures of MOFs [141] 

In last decades, interests in the metal organic frameworks (MOFs) have remarkably increased 

[29, 57, 142]. MOFs are organic−inorganic hybrids assembled from metal ions or clusters and 

organic ligands [143]. As shown in Fig. 14, we know various species of MOFs [141]. Metal 

organic frameworks (MOFs) are reticular solids consisting of inorganic nodes (such as metal 

atoms) and organic linkers. Due to its microstructure, their internal specific surface area is very 

large up to 7000 m2. Most popular inorganic nodes are transition metal oxy-hydroxides, such 

as Zr6O4(OH)4. When this is combined with an organic linker, benzene-1,4-dicarboxylic acid, 

it is named as UiO-66. For other nodes and linkers with the names appeared in Fig. 14, it is 

recommended to refer Table 1 of ref. [141]. They are developed in the course of improving 

heterogenous catalysis starting from basic solids, due to their unique properties like high 

thermal stability, discrete ordered structure, ultra-low densities and large internal surface area 

[144]. It is to be emphasized that MOFs and related materials are closely related to HBs [145, 

146]. MOFs were developed in the interests of materials applications, e.g., for energy storage 

devices such as lithium ion batteries [147], particularly for solid-state electrolytes, the core 

material for all-solid rechargeable batteries [148-152]. They were also developed for medical 

biomaterials [153], or environmental issues such as CO2 fixation [154]. Due to their unique 

structures, MOFs are also used as various templates for material syntheses [155]. MOFs are 

generally prepared in the framework of coordination chemistry and mainly via sol-gel 

processes [143]. However, other more facile and green methods are rapidly developing, among 

others via mechanochemical routes [156-158]. Liquid crystals, playing a key role in modern 

display technology, have also much to do with nonCBs and crystal technology [159, 160]. 

Their electrical conductivity and luminescence efficiency are also improved by designed 

introduction of HBs [161].  
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In our daily life, we have many bridging bonds, i.e., Ca-O-Si for calcium silicates in cement 

clinker, or Ba-O-Ti for barium titanate used in microelectronic devices. When two cationic 

species, M1 and M2 are abridged by an electronegative atoms, notably oxygen, the formed 

bridging bond,  M1-O-M2,  is called a metalloxane bond [162-165]. They play a crucial role in 

heterocationic complexes, notably complex oxides. When M1 = M2 = Si, it is called a siloxane 

bond, which plays a particularly significant role in silica chemistry [166, 167]. For the 

metalloxane bond formation, lattice imperfection plays particularly an important role, since 

bond distortion or vacancy enhances electron maldistribution and hence polarization of 

chemical species of concern. This was demonstrated  by the change in the electronic overlap 

population with decreasing coordination number of a pair of atoms abridged by an oxygen atom 

[164]. 

Two genres of nonCBs with metallic atoms are introduced, where they are either hinging with 

other metallic species, or organic species forming metal – carbon bonds. The latter plays an 

important role in organometallic compounds, serving as catalysts for organic syntheses [168, 

169]. In metallocene compounds, an important group of organometallics, two coplanar 

aromatic rings are bridged by a metallic atom via a special coordination [170, 171]. Both of 

these groups belong to the former category. Representatives of the latter category is metals 

abridged by electrophilic atoms. They are coined as hetero-bridging bonds were already 

referred in this journal [172] and play a crucial role for complexing inorganic compounds like 

metal oxides. Their role is particularly important in the synthesis via sol-gel alkoxide, chemical 

solution deposition or mechanochemical syntheses, often shortened as mechanosynthesis as 

already mentioned in conjunction with MOFs synthesis. 

7. Concluding remarks 

Despite huge diversity, nonCBs possess several general features, i.e., i) they dominate all the 

properties of molecular aggregates, natural or artificial, ii) they accompany general 

physicochemical principles, i.e., and stabilization [38, 43], often with charge transfer [42, 173]. 

Hunting for new, functional materials is nothing but to rationalize and design the order of 

nonCBs. This is in line with seeking green processes to meet sustainable development goals. 

Concerted action of unconventional processes like electrochemical, photochemical, 

sonochemical, magnetochemical or mechanochemical ones, can also be assisted by the 

formation of particular nonCBs. More broadly, nonCBs not only aggregate chemical species, 

but hinge concepts of many different genres of chemical technology, making languages of 

different branches understandable, for instance, those in organic synthesis and inorganic 

materials sciences. Systematic combination and optimization of nonCBs are in line with 

sustainability, a leading concept throughout the chemical technology to date and in future.  
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